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AIRPIANES TO ISOTROPIC ATMOSPHERIC TURBULENCE

By Floyd V. Bennett and Robert T. Yntema
SUMMARY

Several approximate procedures for calculating the bending-moment
response of flexible airplanes to continuous isotropic turbulence are
presented and evaluated. The modal methods (the mode-displacement and
force-summation methods) and a matrix method (segmented-wing method) are
considered. These approximate procedures are applied to a simplified
airplane for which an exact solution to the equation of motion can be
obtained. The simplified airplane consists of a uniform beam with a
concentrated fuselage mass at the center. Airplane motions are limited
to vertical rigid-body translation and symmetrical wing bending deflec-
tions. Output power spectra of wing bending moments based on the exact
transfer-function solutions are used as a basis for the evaluation of
the approximate methods. It is shown that the force-summation and the
matrix methods give satisfactory accuracy and that the mode-displacement
method gives unsatisfactory accuracy.

INTRODUCTION

Current analytic methods of studying airplane responses to con-
tinuous atmospheric turbulence make use of the techniques from random-
process theory. These techniques provide a compact description of the
statistical properties of the turbulent velocities in a form suitable
for response calculations. The significant characteristics of turbu-
lence velocities for this purpose are contained in power spectra and
appropriate cross-spectra. These spectra are then used along with the
appropriate airplane frequency-response or transfer functions for deter-
mination of the airplane response.

The early applications of this technique described the turbulence
as a one-dimensional random process varying along the flight path of the
airplane but uniform along the wing span. (See, for example, ref. 1.)
In recent studies the variation of turbulence across the wing span



(two-dimensional or isotropic turbulence) las been shown to give rise to
significant effects for large flexible airplanes. (See, for example,
ref. 2.)

In general, the solution of the dynamic equations of motion for the
transfer functions requires the use of approximate procedures. It is
the purpose of the present report to investigate the accuracy of several
of these approximate procedures used for culculating the bending-moment
transfer functions when applied to the case of a flexible airplane sub-
jected to two-dimensional turbulence. The approximate methods under
consideration are the mode-displacement me-hod, the force-summation
method, and a matrix method (segmented-wing method - also referred to as
lumped-parameter method). An account of tiese approximate procedures
can be found in reference 3, which also ciues other references.

The approximate procedures under investigation are applied to a
simplified airplane for which an exact solution to the equation of motion
can be obtained. These exact-solution resilts serve as a basis for the
evaluation of the approximate methods. Fo:» purposes of comparison,
results are also calculated for the flexible airplane traversing one-
dimensional turbulence and a rigid airplan: traversing one- and two-
dimensional turbulence.

The simplified airplane consists of a uniform beam with a concen-
trated fuselage mass at the center. Airpline motions are limited to
vertical rigid-body translation and symmetrical wing bending deflections
only. Aerodynamic forces are based on strip theory and include the
effects of unsteady 1ift associated with taie gusts and the resulting
wing motions.

A secondary purpose of this report is to indicate some effects of
spanwise variations of turbulence in addition to those given in refer-
ence 4. This purpose is accomplished by comparing mean-sgquare bending-
moment responses of various airplane confizurations to one- and two-

dimensional turbulence. The airplane configurations are defined by the
ratio of fuselage mass to total mass.

SYMBOLS

b wing span, ft
c(k) generalized Theodorsen function

CLI wing lift-curve slope per rsdian



EI

F(k), G(k)

H{k)

local wing chord, ft
average chord, ft

section lift-curve slope per radian

bending stiffness of wing, lb/sq 't

real and imaginary parts of generalized Theodorsen function
C(k), respectively

transfer function of bending moment for one-dimensional
turbulence

H(k,q), H(k,q+6) influence transfer functions of bending moment for

two-dimensional turbulence

transfer function of bending moment resulting from vertical
wing motion in rigid-body mode

transfer function of bending moment resulting from vertical
wing motion in fundamental wing bending mode

transfer function of bending moment resulting from external
gust loading

Bessel functions of second kind, order O and 1

k reduced frequency, @Le
2u
ky reduced frequency associated with fundamental wing bending
wlé
mode, —
2U
. (8/2)°
a 3 0
(v/2) 0% (my/ 2)
L scale of turbulence, ft
lg gust load per unit span

inertia load per unit span



m (y), m ()

My,

aerodynamic load per unit spzn due to wing vertical motion

bending moment, ft-1b

bending moment due to sharp-e¢dge gust, % Cy, qSyCp
(o

wing mass distribution, slugs/ft

fuselage mass, slugs
wing mass, slugs
total airplane mass distributiions, slugs/ft

total airplane mass, slugs

dynamic pressure, lb/sq ft

ratio of fuselage mass to wing mass, TE - _*
my 1-u
designates real part of ( )
wing area, ¢Cb, sq ft
dimensionless scale of chordwise turbulence, :%5
€
time, sec
forward velocity, fps
vertical component of gust velocity, fps
spanwise displacement, ft
dimensionless spanwise displ:icement, E%E
lateral ordinate of center o’ pressure, %(% - yl +
spanwise location of bending-moment station, ft

%, ft-

1b



yl dimensionless spanwise location of bending-mcment station,
I
b/2
z vertical displacement, ft
z dimensionless vertical displacement, —%—
c/2
r(e) gamma function (see eq. (13))
7l ) space function used in equation (9)
5( ) Dirac delta function
n, My spanwise coordinates, ft
T dimensionless spanwise coordinate, S
b/2
e variable of integration, - ft
Bmy,
K airplane mass parameter, ————
CL(LDSC
Ky wing mass parameter, _é?ﬂ__ = k(1 - p)
Cy._pSc
L,
! fuselage mass ratio, EE
m
§O( ) rigid-body mode
gl( ) fundamental wing bending mode
P air density, slugs/cu ft
G mean-square deviation of bending moment, 1b-ft
QMB(k) output power spectrum of bending moment
¢w(k) power spectrum of vertical gust velocity for one-dimensional

turbulence



®w(k,6), ®w(k,nl-n) power spectra of vertical gust velocity for two-

1C)

Subscripts:

r

Notation:

dimensional turbulen:e

associated gust spectra (see nq. (12))

unsteady lift function for gust penetration (Sears function)
frequency, radians/sec

frequency associated with funiamental wing bending mode,
radians/sec

unit step function

flexible airplane

imaginary component of complex variable
integers, 0, 1, 2, . .

real component of complex variable
Rayleigh

rigid airplane

complex conjugate
absolute value
square matrix
diagonal matrix
row matrix

column matrix

A dot over a symbol indicates a derivetive with respect to time,
and a prime indicates a derivative with retpect to y.



BASIC INPUT-OUTPUT RELATIONS

Random-process techniques as applied to the gust-load problem are
discussed in many references. (For example, see refs. 1 to 4.) From
reference 4, the output spectra of bending moments are defined as follows:

For one-dimensional turbulence,

2
ap() = [1(0)] 20, (x) (1)
where
QMB(k) output power spectrum of bending moment
H(k) transfer function for bending-moment response of airplane to
¢ontinuocus sinusoidal gusts of unit amplitude and wave
length nc/k
@w(k) input power spectrum of vertical gust velocity

For two-dimensional turbulence,

b/2 ~b/2
oot [ [ om0

where

H(k,n) influence transfer function which represents the complex
amplitude of bending-moment response to continuous sinusoi-
dal gust of unit amplitude and wave length nc/k impinging
at station 1 (* indicates complex conjugate)

®w(k,nl-q) input power spectrum of vertical gust velocity

It has been shown in reference 4 that equation (2) may be simplified
somewhat by a change of variable; namely, N = 8 + 1. Thus, performing

the integrations first over 1 and then over 6, as shown in reference .4,
and restricting the system to the symmetrical response only yields

b b_s
Syp(k) =fo <1>w(1«:,e)def_;/2 [HR(k,n)}iR(k,me) + HI(k,n)HI(k,me)]dn

(3)



where Hg( ) and Hy( ) are, respectively, the real and imaginary
components of the symmetrical transfer functions.

The output spectra, defined by equations (1) and (3), can in turn
be used to calculate many other statistical quantities (see ref, 5);
however, the only other statistical quantity to be calculated herein is
the mean-square deviation of the bending moment. From reference L4, the
mean-square response 1is defined as

ol =k/;w ovp(k)dk (4)

TRANSFER FUNCTIONS

From simple beam thecry, the basic differential equation of bending
motion is

o 2
€ (g1 Q_g =1+ L+ 1 (5)
dy® dy

where 1; 1s the inertia load per unit span and Zg and 1,

respectively, the aerodynamic lcads per unit span due to the disturbing
gust and those due to wing vertical motions,

are,

Solutions of equation (5) to obtain airplane motions and deflections
and, subsequently, the determination of the bending-moment transfer func-
tions are accomplished by an exact method, two modal methods (mode dis-
placement and force summation), and a matrix method (segmented-wing
method) .

All of the solutions are made for the simplified ailrplane, consisting
of a uniform beam with a concentrated fuselage mass at the center, shown
in figure 1. It is assumed that the airplane is restricted to vertical
motions only and, in addition, that the pitching motions be neglected.

Exact Method

Equation (5) is solved by means of the Laplace transform method to
obtain z" and, thence, the bending-moment influence transfer function
from EIz". A brief derivation of the exact analysis is given in

appendix A for one- and two-dimensional turbulence.



Modal Methods

The fundamental assumption in all modal methods is that the displace-
ment can be approximated by the superposition of a finite number of nat-
ural or assumed mode shapes. This assumption allows equation (5) to be
replaced by a set of equations of modal motion which can be solved for
the displacement due to each mode. The bending-moment transfer function
is then calculated by two methods: first, the mode-displacement method,
in which the bending moment is determined directly from the curvature
associated with the flexible mode-displacement response and, second,
the force-summation method, in which the motion and aerodynamic loadings
associated with the modal motions, rigid and flexible, are obtained first
and then integrated with-the applied gust loading to obtain the bending-
moment response. Brief derivations of these modal analyses are given in
appendix B for one- and two-dimensional turbulence.

Matrix or Segmented-Wing Method

Equation (5) is integrated twice to obtain an integral equation with
z" as the unknown. In order to solve this integral equation, the wing
is divided into n - 1 segments; thus, the equation can be written as
an nth-order matrix equation.

Integrating matrices of the type given in reference 6 are used to
solve this matrix equation directly for z" and, thence, the bending-
moment transfer function from EIz". A brief derivation of the matrix

method is presented in appendix C for one- and two-dimensional turbulence.
INPUT SPECTRA

The input spectra required by equations (1) and (3) may be approxi-
mated by several analytic expressions. (See ref. T7.) The expressions
used herein are:

For one-dimensional turbulence,

2 2 2g2 2
®w(k) - % 1 + 3s2k2 4 a0+ 652a2k2 - jsl*kLF (E) (6)

(l + 82k2>2 (a2 + 52k2)5 v
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For two-dimensional turbulence,

o,(k,8) = %(%)2 (l + 5521“;)532 Kl<e\jl + s2k2) - Tii‘—kﬁ Ko(e\’l + s2k2> +

(l + 52k2

(o2 + 552E) (o177, BE)
(a2 + sgkg)2

(au + 6a252K2 -‘5Suku)9 - (a2 + Sake)aMBE X (8 2 2 2)
1

5/2 a~ + 87k
(ag + s2k2)
(7

where
] dimensionless scale of turbulence, :E—

c/2
L longitudinal scale of turbulence
a arbitrary constant used to select frequency at which spectrum

begins to deviate from an inverse second-power variation
with frequency and begins to c(ecrease more rapidly

On the basis of the measurements reported in reference 7, a value for
a of 50 appears appropriate and is used in the present calculations.
(Note that eq. (7) reduces to eq. (6) as 8 — 0.)

DETERMINATION OF OUTPUT SPECTRA

For one-dimensional turbulence, the output spectrum is obtained
simply and directly from equation (1) for all methods considered. For
two-dimensional turbulence, however, it shoild be noted from equation (3)
that a double integration of the product of the input spectrum and the
convolution of the transfer function is necessary before the ocutput
spectrum can be evaluated. For the exact ard .matrix methods these inte-
grations were performed numerically because of the complexity of the
integrands. For the modal methods, however, equation (%) is simplified
by the separation of the frequency and space variables in the transfer
function; that is,
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r-1

H(k,n) = }Z Hp (k) 7p(n) (9)
n=0
where r indicates the number of modes, including rigid-body modes, in

the analysis. This separation of variables reduced equation (3) to the
following form:

J o J
(k) = Z Z Re[Hm(k)Hn*(k)] 0, (¥) (10)
n=0 m=0

where for mode-displacement method

J=r -1
and for force-summation method
J=r
and
b
o, (k) =L/; r(e)e,(k,0)de (11)
b/2
r(e) f 7 (M7, (ne)dn (12)
-b/2

The force-summation method contains more terms than does the mode-
displacement method due to the externally applied gust load. (see
appendix B.) It should also be noted that the transfer function Hn(k)

is not identical in the two methods; for example, see equations (B11b)
and (B15b).

The integrand of equation (12) is a relatively simple function and
in most cases 1s integrated in closed form. However, the integration

indicated in equation (11) is performed numerically because of the com-
plexity of the input spectrum.

SCOPE OF CALCULATIONS

Qutput spectra and mean-square values of the bending-moment response
at the wing root and the 0.75-semispan station for one- and two-dimensional
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turbulence have been computed for three conf'igurations of the simplified
airplane (fig. 1). These configurations, defined by the variable u,
the ratio of fuselage mass to total mass, are:

w =0 (all mass uniformly distributed across the wing span)
= 0.5 (one-half the total mass concentrated in the fuselage and
one-half uniformly distributed across the span)

p = 0.8 (80 percent of the mass concentrated in the fuselage and
20 percent distributed uniformly acress the span)

In all computations, the aspect ratio was assumed to be 12.0, and

the dimensionless scale of chordwise turbulence s = :LE was assumed to
c

be 100. In order to facilitate the computations, the reduced frequency
k) associated with the first free-free symmetrical mode of the dynamic
system involving wing bending and the wing aerodynamic mass parameter
kw were assumed to be invariant with u. '"hese assumptions reduced the
computational labor appreciably but resulted in each of the three air-
plane configurations having a different total airplane mass. Since,
however, the purpose of this study was to evaluate methods rather than
to show trends, this difference was not considered a serious drawback.

The values chosen for the constants, x; = 0.2 and k, = 100, cor-

respond to those of an aircraft which has a high degree of wing flexi-
bility and low aerodynamic damping. Such a system, it was felt, would
provide a severe test of the adequacy of the approximate methods to be
evaluated. Since the wing mass parameter wis held constant, the airplane
aerodynamic mass parasmeter varied with p - that is, for p =0, « = 100;
for u = 0.5, =k = 200; and for u = 0.8, < = 500.

Aerodynamic strip theory was used in a.l of the studies since a more
refined theory would have further complicat:d the already complex solu-
tions and probably would not have influencel appreciably the conclusions
regarding the relative accuracy of the varisus methods. Also, the
unsteady lifts associated with the gusts ani the resulting wing motions
were included in the analyses.

All the results presented herein are i1 nondimensional form. The
output bending-moment spectra and the mean-square results have been
divided by the square of the bending moment due to a sharp-edge gust of
unit vertical velocity which is constant across the span.

The modal methods require a finite numser of modes to approximate
the airplane motions. For the mode-displacament method, rigid-body
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translation and the first natural wing bending mode were used. For the
force-summation method, the following three approximations were
investigated:

(1) Rigid-body translation and the first natural wing bending mode
(same as for the mode-displacement method)

(2) Rigid-body translation and a parabolic approximation to the
first free-free wing bending mode

(3) Same as approximation (2) except that the frequency associated
with the natural wing bending mode was used instead of the approximate
Rayleigh frequency

The matrix method requires that the wing be divided into a number
of equally spaced stations across the span in order to perform the
matrix integrations. For the present study, five such stations across
the wing semispan were used.

For purposes of comparison, bending-moment results were also calcu-
lated for the simplified airplane considered to be rigid. For these
calculations the force-summation method was used with the airplane motions
limited to rigid-body translation only. A brief derivation of this pro-
cedure is given in appendix D.

ACCURACY OF NUMERICAL INTEGRATIONS

Inasmuch as the integrations involved in calculating the two-
dimensional output spectra were performed numerically (see the section
entitled "Determination of Qutput Spectra"), a check on the numerical
accuracy was deemed necessary.

Exact Method

For the exact method a suitable check on the numerical accuracy of
the two-dimensional expression was obtained by calculating the one-
dimensionel output spectra from the two-dimensional expression (see
eq. (3)) and comparing the results with those from the one-dimensional
expression (eq. (1)). This one-dimensional check calculation is obtained
by substituting &¢4(k) for &,(k,8) in equation (3). Thus, any dis-
crepancies between the results of the two procedures can be traced

directly to the numerical integrations of the two-dimensicnal expression.
A comparison of these results is given in figure 2.
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From part (a) of figure 2 it is evident that both methods give
nearly the same results for the spectra of root bending moment. It can,
therefore, be expected that the accuracy of the root-bending-moment
results for the two-dimensional gust structure are satisfactory.

From part (b) of figure 2 it is evident that both methods do not
give the same results for the spectra of benling moment at the 0.75-
semispan station. It can, therefore, be expacted that the results at
the 0.75-semispan station for the two-dimensional gust structure will
not be very accurate. The inaccuracy of these results can, in largce
part, be attributed to the fact that the 0.7>-semlspan station is located
between two of the equally spaced stations used in the numerical integra-
tion procedures. This location, unfortunately, places the numerous dis-
continuities in the slope of the transfer fuactions (see fig. 3) to be
integrated midway between the stations. At the time of this discovery
it was considered impractical to change to another spanwise station;
thus, the results at the 0.75-semispan station calculated by the exact
method will not be presented for the two-dim2nsional turbulence condition.

Modal Methods

For the modal methods the integrations to be performed in order to
evaluate the output spectra are defined by ejuations (11) and (12). The
first integration, equation (12), is of a form which can be integrated
analytically or accurately by numerical proczdures. Thus, the subsequent
integraticn, equation (11), which is perform:d numerically, should also
be accurate.

Matrix Method

The numerical Integrations used to calcilate output spectra for the
matrix method are the same as those used in the exact method. Figure 3
shows that excellent agreement exists belwecear the exact and matrix trans-
fer functions; thus, the numerical inaccuracies in this method are pre-
dominantly the same as in the exact approach. For this reason, the
matrix results at the 0.75-semispan station for two-dimensional turbulence
are not presented.

EVALUATION OF APPROXIMATE P0CEDURES

In this section the various approximate procedures are cvaluanted
from the output-spectra and mean-square bendlng-moment rcesults for one-
and two-dimensional turbulence. In order to facilitate the discussion,
the approximale procedures are divided into =wo groups: first, the more
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accurate methods consisting of the force-summation method based on a
natural mode and the matrix method; second, several simplified modal
methods consisting of the mode-displacement method based on a natural
mode and the force-summation method based on a parabolic mode with the
corresponding Rayleigh-Ritz frequency and with the natural frequency.

For all solutions the results for the three model configurations
studied show the same type of comparison; thus, the output spectra are
presented for only one representative configuration, namely, n = 0.5.

Force-Sumation and Matrix Methods

Statistical bending-moment results obtained by the force-summation
method using one natural mode and the five-station matrix method are
evaluated by comparison with the exact-method results. 1In order to per-
mit evaluation of the influence of the second symmetrical bending-moment
resonance peak on the results, the ocutput spectra have been calculated
by the exact and the matrix methods over a larger range of reduced fre-
quencies than is usually considered necessary. The output spectrum for
the airplane assumed to be rigid is also presented for comparison.

Bending moment at the wing root.- Spectra of the bending moment at
the wing root for a one-dimensional gust structure are presented in
figure L(a). It is readily apparent that both of the approximate methods
yield spectra which are almost the same as those for the exact-method
results. Also, the results for the rigid airplane agree very well with
the results for the flexible airplane calculated by the exact method for
small values of the reduced frequency where dynamic flexibility effects
are unimportant.

Spectra of the bending moment at the wing root are compared in
figure 4(b) for the case of a two-dimensional gust structure. The agree-
ment is again seen to be very good throughout the frequency range.

For both the one-dimensional and the two-dimensional gust structures,
the peak of second symmetrical bending mode, located at k = 1.12, is so
small that it is barely evident on the plots and, thus, has little effect
on mean-square results.

Bending moment at 0.75-semispan station.- Spectra of the bending
moment at the 0.75-semispan station for a one-dimensional gust structure
are compared in figure 4(c). The two approximate solutions agree very
well with the exact-method results. The force-summation solution, of
course, does not give the second-mode resonant peak, and the matrix
method gives it displaced to a somewhat higher frequency. In this high
frequency range there is no experimental confirmation of the shape of
the input gust spectrum; thus, the significance of the second-mode peak




16

1s questionable. For mean-square results this peak can be neglected,
but for higher statistical moments, such as ¢re needed to predict the
time expected to exceed a given bending-momert level, these secondary
peaks may be important.

For the two-dimensional case it was fourd that the exact- and
matrix-method results for the 0.75-semispan ttation were inaccurate due
to numerical integrations. (See section entitled "Accuracy of Numerical
Integrations.") Hence, figure 4(d) presents only the force-summation
and rigid-airplane results. 8ince the numerical integration errors pres-
ent in the exact and matrix methods are not present in the force-summation
method, there is no reason to believe that tlis method is any less accu-
rate for this case than for any other case ccnsidered. Figure h(d) lends
support to this statement, by showing good agreement between the force-
summation method and the rigid analysis at lcw frequencies. It should
be remembered that the numerical inaccuracie:s in the exact and matrix
methods occurred in the determination of the output spectra and not in
the transfer-function calculations. Thus, as was shown in figure 3, the
matrix method yields excellent two-dimensionel transfer-function results.

Simplified Modal Methcds

Statistical bending-moment results obtained by simplified modal
approaches are evaluated by comparison with the force-summation results
based on a natural mode., (This method has been shown to be accurate in
the preceding section.) The simplified modal methods consist of the
mode-displacement method based on a natural rnrode and the force-summation
method based on an approximate parabolic mode. Two different procedures
are used in the latter method: the Rayleigh-Ritz procedure in which the
Rayleigh frequency asscociated with the approximate mode is used, and the
modified Rayleigh-Ritz procedure in which the frequency associated with
the natural mode is used.

Bending moment at the wing root.- Spectra of the bending moment at
the wing root calculated by the modal methods for a one-dimensional gust
structure are shown in figure 5(a). Comparec with the force-summation
method based on a natural mcde, the mode-disylacement method yields inac-
curate results in the low frequency range. The force-swmation Rayleigh-
Ritz approach based on the parabolic mode results in a shift of the res-
onance peak, as would be expected, because of the Rayleigh frequency.
Although, this approach yields a fairly good result for the mean-square
bending moment, it would be a very poor choice if higher statistical
moments were desired. The force-summation mcdified Rayleigh-Ritz approach
based on the parabolic mode is almost as accurate as the results when
the natural mode 1is used.

The results for the two-dimensional gust structure are presented in
figure 5(b). The same trends can be seen as for the one-dimensional case.
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Bending moment at the 0.75-semispan station.- Spectra of the bending
moment at the O.75-semispan station cbtained by the modal methods are
shown in figures 5(c) and 5(d) for the one- and two-dimensional gust
structure, respectively. It is agaln apparent that the mode-displacement
method is very inaccurate in the low frequency range, whereas the force-
sumation modified Rayleigh-Ritz approach is very accurate throughout
the frequency range shown. Results were not calculated by the force-
summation Rayleigh-Ritz approach based on the parabolic mode for this
station.

EFFECTS OF SPANWISE VARIATIONS CF TURBULENCE

In this section the effect of the spanwise variation of vertical
turbulence on the bending-moment response is assessed. First, the effects
on the output spectra are shown in figure 6. Part (a) of this figure
shows the spectra at the wing root as determined by the exact method.
For the configurations with p = 0.5 and 0.8, it is apparent that the
main effect of the spanwise variation of turbulence 1s an appreciable
reduction in the bending-moment response as compared with the one-
dimensional case, particularly in the vicinity of the fundamental mode
resonant peak. For the configuration with p = O, however, the two-
dimensional turbulence results in an increase in root-bending-moment
response because the response produced by the one-dimensional turbulence
is zero. Part (b) of figure 6 shows the spectra at the 0.75-semispan
station as determined by the force-summation method. (The exact-method
results have been shown to be inaccurate for this station because of
numerical integrations.) The same results are apparent at this station
as at the root station.

Second, the effects of spanwise variations of turbulence on the
mean-square bending-moment results are shown in figure 7. As would be
expected, the same effects shown cn the spectra are further amplified
in the mean-square results; namely, a decreased response for u = 0.5
and 0.8 and an increased response for u = 0. These results are in
agreement with those given in reference 4 for root-bending-moment
response.

Finally, the effects of spanwise variatlions of turbulence on an
amplification factor, defined as the ratio of the mean-square bending
moment of the flexible airplane to the mean-square bending moment of the
rigid airplane, are shown in figure 8, Again the same general conclu-
sions that were reached for the results shown in figures 6 and 7 are
evident. In addition, it should be noted in the low u range (p - 0)
that the trend of the amplification factors for the one-dimensional gust
is not the same as that for the more realistic two-dimensional gust.



18
CONCLUSIONS

A study has been made of the relative a:curacy of several approximate
procedures for calculating the symmetrical banding-moment response of
flexible airplanes to continuous isotropic tarbulence. These approximate
procedures have been applied to a simplified airplane which consists of
a uniform beam with a concentrated fuselage mass at the center. The
conclusions drawn from this study are:

1. The force-summation method based on one natural bending mode gives
very good results compared with the exact solution.

2. The matrix method based on five stations across the semispan gives
very good results compared with the exact solution.

3. The mode-displacement method based o1 & natural mode yields inac-
curate results; however, this relatively simple method can be useful in
trend studies involving variations in wing flexibility.

4. The force-summation method, based on an approximate parabolic
mode and the Rayleigh frequency, loses 1littl: accuracy in mean-square
results. However, the approximated natural frequency causes a shift in
the fundamental mode resonant peak; consequeatly, higher statistical
moments will be in appreciable error.

5. The force-summation method based on an approximate parabolic mode
loses little accuracy if the natural frequenzy 1s known.

In addition to the evaluation of approximate methods, the effects

of spanwise variations of vertical gust velo2ity were also studied. From
this study it was found that the inclusion of spanwise variations of tur-
bulence results in a decreased response if most of the airplane mass is
in the fuselage and In an increased response 1if most of the mass is in
the wing. Also, the exclusion of spanwise variations of turbulence in
trend studies, such as the trend of amplification factor with mass ratio,
may lead to erroneous conclusions.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Field, Va., October 24, 1958.
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APPENDIX A

EXACT ANALYSIS FOR SIMPLIFIED MODEL SUBJECTED TO

SYMMETRICAL PART OF RANDOM-GUST DISTURBANCES

The differential equation defining the symmetrical motion of one-
half the simplified elastic airplane consisting of a uniform beam with
a concentrated mass at its center and subjected to a concentrated sinus-
oidally varying gust at station 1 (see fig. 1) is

EIz"" = -m(y)Z - % mFEB(y—O) - C(k)claqc % + ¢(k)claqc eﬂDtB(y-n)

W

U
(A1)

Equation (Al) is a specific form of equation (5). Since the applied

force is varying sinusoidally, the steady-state response also varies
sinusoidally with the same frequency and thus a solution of the form

z(y,t) = z(y,0)el®® can be postulated. Nondimensionalizing equation (Al)
according to the definitions given in the symbol list yields

AL 5§§[i + Ro(§-0)] 2 - 21 K Clk) 7, 28(0) ¥ 555 (a2)

2 U
Kg kg o Ko™ty

By using the root boundary conditions Z'(0) = Z' (0) = 0, the solu-
tion of equation (A2) is obtained by the Laplace transform as

Z = Eigl[%osh ay + cos ay - j%(sinh ay - sin q?% +

2 a
z"(0) ch ad s at gx) 0 - -
. (cosh ay - cos ay) + aBkaznw 3 sinh a(y - 7) -
sin a(§ - )] /(7-7) (A3)

where
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K2, 2kG(k) _ 2ikF(k)

2 2 5 -8~ 1h
kg K"y Ky "y

when the second and third derivatives of eguation (A3) are taken and the
tip boundary conditions, 2z"(1) = 2™ (1) = 0 are used, the unknowns
2(0) and Z"(0) are determined. Substituning these root conditions
into equation (A3) and taking the second derivative yield

zZ" = _@ %{%E:osh a(l - %) + cos a(l - ﬁ«] [Cl<a2Fl - gll F2) -
aky Ky

F3 (aEC2 - % CBﬂ - % sinh a(l - %) + sin a(l - ﬁ)] [Ch(agFl - ﬁ. Fe) -
FB(a205 - 2 Cl)} + [?inh a(y - 1) + sin a(y - ﬁﬂ_](&-ﬁ)} (Ak)

where

cosh a + cos a

2
[
]

C, = cosh a - cos a
05 = sinh a + sin a
Cy = sinh a - sin a
F, = cosh ay - cos ay
Fo = sinh ay + sin ay

cosh a§ + cos ay

+=j
N
]

D= 2[}(1 + cosh a cos a) - aB(sinh a cos a + sin a cosh ai]

Since a = g - ih 1is a complex number, further manipulations are required
to put the expression for 2z" into a form suitable for computation. The

final form of 2Z" is
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z"(k,n) = qu,c[ﬁR(k,ﬁ) + 1I~{I(k,ﬁ)] (A5)
where
- 5 #(x)
T2 (@® + P)rgPy
Hy(k,7) = QoPsq + Quofeg - Quifis - QoPap + A5 (gi’ 57 * h1\"68)] (o)
Hr(k,n) = Qloﬁ'j"( - Q9ﬁ68 - Ql2ﬁ15 + Qll%[; + A5(gi’57 - hi’68>](°‘)
and

Q = QQ + Ly
Qo = QR7 - Q198

dgPp), + dgPsg = dyoPgg + d11Py5 - dleﬁg

U]JD
]
ol
las)
|
1

Q6 = d7§21+ + dB-P;B + d9§68 + d101_357 + dllﬁgﬂ + (1121315
Q; = dl'}?_’B - 5P, + dsPsy - d,Pgg + AsPyz - dgPay
Qg = d1P,), + dQFB + dzPgg + &) Ps + d5?§: + dgPy=
a = -P15(g? - B2) + 2ghP-

i, 2 _ 2
4, = -Pop (€2 - B°) - 2guPy;
= gPl + hP
<g2 + h2) ’

_<g +h2

=7
N
]
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B 2 .2\ _ _ A
-PB(g n?) - 2ghPoy <g2+ N

- ppy (a2 - 12) + 2ghPrs - <g2 I h2>(8P68 - hPgy)

- ..P___(g2 - 12) + 2ghP

- (g - n2) - 2P

i (52 I h2> (gPﬁ ' hP-6_8>

- (229 s - )

- Py (8 - 17) - 2ePeg - 4y
- Peg(e? - H2) + 2ghPsy - 4y
2@+ %P)

g° + b°
= Aqy - g(e? - 3n2)q, + n(r? - 5g2)q5
-y + 8(g? - 312)ay + n(6? - 38%)q,
=1+ PP, + PPy

= P5P5 + P)J,P6 + PlP,( - P2P8
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Py = cosh g cos h Py cosh gy cos hy ﬁl cosh gy cos hy Py cosh ga cos ha
P, = sinh g sin h P, = sinh gy sin hy §2 sinh gy sin hy f’z sinh ga sin ho
P5 = cos g cosh h ?B cos gy cosh hy 1’53 cos gy cosh hy f’B cos ga cosh ha
Py = sin g sinh h Py = sin gF sinh hy P, = sin gy sinh hy 15& sin ga sinh ha
Py = sinh g cos h 175 sinh gy cos hy §5 sinh gy cos hy ?5 sinh ga cos ha
Pg = cosh g sin h §6 cosh gy sin hy §6 cosh gy sin hy 1‘36 cosh ga sin ho
P7 = sin g cosh h ?7 = sin gy cosh hy ﬁr( sin gy cosh hy f’7 sin go cosh ha
Pg = cos g sinh h FB cos gy sinh hy §8 cos gy sinh hy 1‘38 cos ga sinh ha
Ppn = Pp + Pp

Pﬁﬁ =P, - P,

y=1-1

a=-F-7

The bending-moment response is obtained from
a1(3)
Mg = EIz" = — 2L 3" (A6)

b 2

@

Nondimensionalizing equation (A6) by the bending-moment response due to
a sharp-edge gust yields

M ¢(k) Yoy o=y L N (1 =
MB]?S = [HR(k)n) + lHI(k,T])]

b (@12 + @) ¥ep

Hg(k,q) + iHp(k,7) (AT)

The bending-moment transfer-function response to a one-dimensional
gust field may be obtained from the two-dimensional transfer function as
follows:

1
H(k) =f H(k,7)df (A8)
0
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Integrating equation (A8) yields
H(k) = Hg(k) + iHy(k) (A9)

where

Hp(k) = 1 5 b q - Oq1P1z - b__
k) - (2 =) |agfsy + ucfes - Py - gy e

#(k)

< 2 o\ _
M + % ;Yep

Ai(g%57 + hﬁ68>]

l ’, 4 ’, ’,
Hy(k) = <gg " h2> [QlOP‘j"( - QgPeg - YioPiz + Quafy +

A, <gi,57 ) @68& B(x)

and

’,

P13 = 857 + Pheg

PEZ = gP68 - hP57
o7 = B8P3 + By,
Peg = 8Fay - PPz

~

Peg = €Fpy, - MPyz

All other terms are as defined after equatior (A5) for the two-dimensional
case,
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APPENDIX B

MODAL ANALYSES FOR SIMPLIFIED MODEL SUBJECTED TO

SYMMETRICAL PART OF RANDOM-GUST DISTURBANCES

In this appendix, solutions of the differential equations defining
the symmetrical motion of the simplified model illustrated in figure 1
are obtained by two modal techniques, namely, the mode-displacement
method and the force-surmation method (ref. 3). Within the framework
of these two methods, solutions are obtained by the Rayleigh-Ritz pro-
cedure based on an exact free-free bending mode, and, in addition, for
the force-summation method, on an approximate parabolic mode.

Displacement Analysis

The determination of modal deflections is a common initial step in
both the mode-displacement and the force-summation methods. The deflec-
tion expressions are a function of mode shape and thus give different
results depending on whether exact- or approximate-mode shapes are
employed.

The Rayleigh-Ritz equations defining the displacement in the assumed
modes of an unrestrained elastic airplane subjected to an arbitrary
external locading are given in reference 3. For the simplified airplane
of the present study restricted to vertical rigid-body displacements and
deflection in an assumed fundamental free-free symmetrical bending mode,
these equations can be written in the terminology of the present report
as

b/2 b/2
Zdbgu/ib/g mt(y)dy = Cldéq 9%?1 hmk/i [20 + Zl§l(YX]dy -

b/2
CLaEq Q&&l J[ w dy (B1)

b/2 b/2 o
legj:b/E my () [el(y)] Cay - Zlf_b/g EI [él"(y)] dy =

b/2 b/2
Cr,ca 9%?1 ﬂbh/lb/z{zo[ﬁl(yﬂ + zl[gl(y{lg}dy - Cr Ca ¢i?) \/1b/2 ey (y)dy

(B2)
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where

2 generalized coordinate for rigid-body translation

zy generalized coordinate for first free-free wing bending mode
W symmetrical part of complex amplitude of gust velocity

In writing these equations, the vertical disjlacement at any point on
the wing was expanded in terms of the rigid-»ody vertical-motion mode
and some mode §l(y), representative of the {undamental free-free mode

of the simplified airplane, as
Z =2t Zlﬁl(}’) (B3)

It was further assumed that the mode gl(y); whether exact or approximate,
satisfies the orthogonality relation with th: rigid-body mode, or that

fb/2
m (y)g1(y)ay = 0
-b/2

If the second term of equation (B2) is multiolied and divided by the

b/2
expression \jp mt(y)[gl(yﬂ 2dy, it can be written as
-b/2

rfb/e El[g "(y)] 2ay \
_ 1 b/2

24 ;/)22 >f m, () [£1(5)] “ay
f m, (y) [gl(y)] “ay o/
v/ ’ )

If the square of the approximate Rayleigh frzaquency Wpa is substituted

for the term in braces, this expression becones

b/
zlumazjob ° my (y) [El(y)] Cay

Using this expression and nondimensionalizinz equations (B1) and (B2)
give
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EiC(k)(-Z-o v Ky2y) - (k) Ly (BY)

nwsz

M151<l ) k22> _ _ LkikC(k) (KuZg + Ks21) + 2p(x) Ly (35)
kR KKRa %vKRaU

where

R
N
I
N

>~
=

|
I

1
R

M - ji R() [1, (5] 03

) - m (F)
my (0)

m(y
Solving equations (B4) and (B5) simultaneously for Zg and 2z gives

2
Zg = ¢(k)2 LiK, kC(k)2 Ly - {UiKs &(k_)_5 - M1<l - k_2> Ly
Unkaa A Kkaa<> Kkaa kRa

(B6)
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2
2= P kC(k)g e kC(k)g Ly 1| (B7)
Uk kRa“D Keg K 1 kpg KwKRa
where
2 o Kzke
A = 8<K K 2) 59&515 - 21 Ml<% -k ﬁ> - 5 kc(k)g +
KsKRa kpg LS KwKRa
2
M, k 2
1 5(1 - LS - : (B8)
M¥Rg kRa

If an exact free-free bending mode for the system is used rather
than an approximate shape, the Rayleigh frecuency WRg is identical to

the exact fundamental-bending-mode frequency for the system w; and,
thus, kj = kgy. Where the exact frequency is known but the exact mode

is unknown, an increase in accuracy can norrially be obtained by using
the exact frequency in place of wgrg. This procedure is referred to as

a modified Rayleigh-Ritz approach in the present report.

Bending Moments Due to a Two-Dimensional Gust Distribution

Mode-displacement method.- In the mode-displacement method, the
bending moment is defined by simple beam theory as

r-1

Mp = EI(Yl)EE Znén"(¥1) (89)

n=0

In the present study, EI is a constant anc EO"(yl) is equal to zero;
thus,

Mg = EIzlgl"(yl) (B10a)

or

zlgl"(y;) (B1ODb)
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Dividing equation (B10Ob) by the bending moment due to a sharp-edge
gust and substituting equation (B7) for 2z give

M
B _
T = Holg + HiLg (Bl1a)
B,s
where
Pp M N
oxe(x) |KaTE1L"(v1)#(x)
HO = ElKl" 5 5o
kKR _ kRa Yep O
> (B11lb)
2 "
. k° 5y KC(x) kq€ " (vp) B(K)
1= 2~ 2 2z
A kR tKRa Kpg“Yep B

/

If the procedure described in reference 4 is used, the spectrum of the
output bending-moment ratio is written as

dyp(k)

Z____SE = [HolP0y oK) + |H1|%0, (k) + 2Re(HoH*)oy, (k) (B12)
MB,S
where
2 1-6
& (k) =fo @w(k,é)déf_l 7MW 7n(7+8)ad (B13)
and
7o) =1
7]_(7-]) = gl(ﬁ)

Equation (B13) is a slightly modified version of equation (11).

Equation (B13) can be used with either an exact bending mode or an
approximate mode which satisfies the orthogonality condition with the
rigid-body mode. Unless the second derivative of the approximate mode
is a very good approximation of the second derivative of the exact mode,
however, the bending-moment result cannot be expected to be very accurate.

Force-summation method.- In the force-summation method, the inertia
and the aerodynamic loading due to wing motions in the various modes are
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integrated tqgether with the external gust loading to obtain the desired
bending moment as follows:

b/2
Mp =f (zi + 1+ lg) (y - yl>dy (B1L)
1
where 1; and 1, are the inertia and aercdynamic loadings associated
with the deflections of the rigid body and fundamental modes and 1 is

g
the symmetrical part of the loading due directly to the gusts and they

are defined by the following equations:

[ mt(Y)wz(Zo + Zl§l(Y))

CZ cq
Zm = - ; C(k)<ZO + Zlgl(Y))iﬂ)
c, cq
1, = —l%— B(%)w

Substituting the previously derived expressions for ZO and Zl

(egs. (B6) and (B7)) into equation (Bl4) and manipulating the result
gives, after dividing by the bending moment due to the sharp-edge gust,

Mp

i o - Holg + HMalg,1 + Holg o (B15a)
J
where
5

_ . oy [ 20 ]

Hog = {Ty + 1Tp)(T5 + 1T)) =

L cp -

. NN

Hy = (Tl + 1T2)(T5 + iTg) g_z
AN S (B15b)
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and
Tl = L (k2 * )
KRa
F
T, = -
o) 2
kRa
) 2
Tz = Q[Kiycp B Kh(12 B Il)] " Mefep| ! KRa”
kRa Ra
. F
Ty = - 2[K5y0p - K (T2 - Il)]
kRa
~ v 2 G
T = -GK) “ep o S (To - 1)
kRa2 M kRa2 kR&E
~ }-,C :’F\‘
T = F'K p - I B I
¢ b=t 2( 2 1)
Ra Ra,
kRa kRa 1 kRa kRa
2
oA [ k2
> 2
xlkRa KRa

b2 - k)8 - 21 - 2. L ;
2 :9 _ o1 - X e 2|y 2
KRa KRa ! *Ra |*Ra

A_ali Kv
G - Kw[g(k) + 2J
f = 28 F(x)

Kw

1

I, = yl\/: §1(§)di
Y1
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L]
i

.1 ¥
5 j_ ye, (7)ay
¥

Mo = Ky + R[gl(o)]2

When the procedure given in reference 4 is used, the spectrum of output
bending-moment ratio is written as,

(MB 5)2 - |HOI ®w00(k) + IHlI ¢wll(k) + |H2I ¢w22(k) + ERe(HOHl*)¢WOl(k) N
J

2Re(HOH2*)¢w02(k) + 2Re (Hlﬂg*)mwlgik) (B16)

where the functions & (k) are as defined in the preceding section
=\ _1[/= _ = = - = = m_a . .
and  7,(f) = 2[(n yl>f<n yl) + ( i yl)]< i yli]. Equation (B1l6) is
an expanded version of equation (11) and can be used with an exact bending

mode or an approximate mode which satisfies the orthogonality relation
with the rigid-body mode.

Bending Moments Due to a One-Dimensionil Gust Distribution
Mcde-displacement method.- In the mode-lisplacement method for the

one-dimensional gust distribution, the integrals defining Lg and Lg,l
can be evaluated exactly. These integrations yield

L = 2w
g
(B17)
Lg,l = 2WK]+
Substituting equations (Bl7) into equation (1311) gives
= (28 + 2KyHy w (B18)
MB, s '
J
Then the output bending-moment spectrum becoaes,
(x) .
i) Deﬂo\? + | 2Ky Hy| 2+ BKLLRe(HOHl*)] 0, (k) (B19)

(MB) 5)2
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Equations (B18) and (B19) can be simplified somewhat by combining terms,
but this was not done since Hp and  H] for the two-dimensional case

had to be determined in any event.

Force-summation method.- In the force-swmation method, for the one-

dimensional gust distribution, the integral expression for Lg,g evalu-
ated exactly yields
Lg.o = Tep¥ (B20)
Substituting equations (B20) and (Bl7) into equation (Bl5) gives
Mp -
= w(2Hy + 2K, H) + YepHo (B21)
MB,s ( P )

The output bending-moment spectrum for the one-dimensional gust
distribution can then be written as,

dyp (k)

(5,5)°

= E+|HOI2 + uKu|Hli2 + icpelHQI2 + 8KhRe(HoHl*) +

b opRe (Hflp®) + bK\TepRe (i) 0 (k) (B22)
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APPENDIX C

MATRIX METHOD FOR SIMPLIFIED MCDELS SUBJECTED TO THE
SYMMETRICAL PART OF A RANDOM-GUST DISTURBANCE
The differential equation defining the symmetrical motions of one-
half the simplified wing-fuselage combinaticn treated in this paper

(fig. 1) and subjected to a sinusoidal gust velocity at station 1 on
the span is given by equation (A2) as

8(7-1) (c1)

al=

FUn EEE[i + RS(?—O[]Z - 2i _55 9151 7 + gﬁé&l
ka ka Kw ka Ky

Integrating equation (Cl) twice by using twc of the four appropriate

boundary conditions; namely z" =2'"" =0 et y =1 gives
1,1
oo L1 fj k2[1 + Ro(7-0)] 7 - 2ix k) 7, 20(K) w 5(§-ﬁ)}d§ &
ke® JyJy " ~ U

(c2)

By definition

2=j]z"dydy

Using the boundary condition that the slope of the wing bending deflec-
tion at the fuselage center line (i = 0) must be zero for symmetrical
motions in this definition yields

. yry oo
z:zo+ff z" d§ ay (c3)
ovoO

Substituting equation (C3) into equation (C2) gives

-1t 1 1 - N - y y - - -
7 =i2_ j}_”/;_, {kQ[l + RB(y-O)] - 2ik ﬂél (Zo +foj;) 2" dy dy>+

Lem(k) ¥ 5(3-7)|ay ay (ck)

w U



35

Dividing the beam into n - 1 segments, equation (C4) can be written as

1 1,1
an nth-order matrix equation. Designating [Ii} =k/i , [Ili] =\/1\/: ’
Y yvy

y ¥
[ié] =d[\ , and [iIé] =\/h\jr as integrating matrices for the contin-
0 o0vo

uous functions in equation (C4) and integrating the delta functions
exactly allows equation (Ck) to be written as

{z"} - 1;_25[111] (1 - 21 %@J{{zo} + [11g {z}} 4 2P0e) %{(ﬁ - i)](ﬁ-}")}

Y kaenw

(c5)

Under the assumption of symmetrical bending deflections, the shear at
the fuselage center line must be zero; thus,

b/2
(EIZ");{:O =0 =f0 / (zi + 1+ Zg)dy (c6)

Equation (C6) can be written in matrix notation as follows:

0 = k° “IJP - 21 %%lJ + RLIBJJ {{zo} + [112.]{2"}} + E%W(_}ﬂ% (cT)

where LIJ is a row matrix of integrating factors for the range O to 1
and |Iz] =[10000] for n =>5.

Solving equation (C7) for {Zo} gives
{Zo} - T{lz (1] [1 - 21 %flj + R[Iﬂ:l [115] {2} + .i_g(:‘_) %{1} (c8)
where

R N R

and [I] and [Ii] are composed of identical rows of |I] and of
LIBJ’ respectively.
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Substituting {EO} from equation (C8) nto equation (C5) yields,
after rearranging terms,

- 52—2'[111] [l - et EK}J)J 1] + ;11[[1] [l - 2i %nl;—)J + R[Iﬂ:l )| {=" =

St LI RS T AR B

From equation (C9), Z" is obtained by inverting the matrix premul-
tiplying {Z"} at any or all of the n stations due to a sinusoidsal
gust of intensity w applied at any station 17 on the wing. Note that
n need not be at the stations into which the wing is divided; it may be
anywhere on the wing. In the computations performed in the present
report, only 5 stations were used but 10 equelly spaced values of 1
were required to obtain reasonable accuracy :n subsequent numerical
integrations.

In the computations, the followlng integrating matﬁices from refer-
ence 6 were used:

1) = 93_2.L 1 4 2 4 1]

(2 on w88 3|
0 2 21 60 25
[I1,] = (_Oé%)f 0 0 0 32 16
0 0 -1 6 7

e o 0 0 0 |

K 0 0 0 0|
T 6 -1 0 0

[11,) = %i)_g 16 32 0 0 0
25 60 21 2 0

éu 88 Ly 24 2 |
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The bending moment is obtained from

Mg = EIz" = EI<§>
(3)

Nondimensionalizing equation (C10) by the bending-moment response due to
a sharp-edge gust yields

z" (c10)

rolo

2
M Ka“Ky _, - -
S Zep g

The bending-moment transfer-function response for a one-dimensional
gust field may be obtained by simple numerical integration over % of
the two-dimensional transfer function; that is,

1
Mk):jﬁlﬂmﬁMﬁ (c12)
0
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APPENDIX D

ANALYSIS FOR SIMPLIFIED RIGID MODEL SUBJECTED TO THE

SYMMETRICAL PART OF A RANDOM-GUS? DISTURBANCE

In this appendix, an exact solution is made for the symmetrical
response of a simplified rigid airplane to random vertical gust excita-
tion. (See fig. 1.) The basic differential equation defining vertical
motions of this system is

O =13+ 1,+1 (1)

g

(which is a specific form of eq. (5)) where 1; 1s the inertia loading
per unit span and lg and 1, are, respect.vely, the aerodynamic

loadings per unit span due directly to the symmetrical part of the gust
and those due to wing vertical motions. Since the flexibility term is
missing in equation (Dl), it can be solved exactly for the system motions.

Displacement Analys:s

Under the assumptions of the present study (see appendix B), equa-
tion (D1) can be rewritten as

b/2

-b/2

If sinusoidal excitation is assumed, equatior. (D2) is solved directly
for the rigid-body displacement. This has been done in reference 3, and
in the terminology of the present analysis tte equation is written in
nondimensional form as

1
2o = 5 P(x) L d/‘ w 4y (D3)

2 U
k -k + 21 9%§l 1

my(y)dg + Cp, Sq £k 44 - ¢y cq ¥ Blx)dy = 0 (p2)

Bending-Moment Analysis

The bending moment is obtained from the following simple integration
of the loadings (force-summation method):



39

b/2
Mg =j; / (y - yl) (li + 1+ lg)dy (D4)
1

where, for the rigid airplane,
l; = % m-t(}’)weio
c?

¢y gl < c(k) i

Zm = - 5 zO

w
Zg :czaqc¢(k) ﬁ

Substituting equation (D3) into equation (D) and dividing by the bending
moment due to a sharp-edge gust results in the following expression:

Mp

Mp = Holg + Holg o (D5)
where
Ho = - & g(x)d1 - B [k(x + 1) + 26(k) - 2iF(x)]
° [k(x + 1) + 26(x)]2 + 4[F(x)]2
_ #(k)
B, = o

If the same procedure employed in the analysis for the flexible airplane
is followed in the analysis for the symmetrical response of the rigid
airplane, the spectrum of the output bending-moment ratio for the two-
dimensional gust distribution is

[oym(x)]

% L - |Ho|2¢woo(k) + |H2|2®w22(k) + 2Re (Hone*)%o(k)
(D6)

For the one-dimensional gust distribution - that is, w constant along
the span - equation (D6) reduces to

Ees) i

i B RO (o)
B,s



An exact solution can be obtained for the output bending-moment
spectrum of a rigid airplane traversing a rsndom two-dimensional gust
field with the distribution characteristics defined by equation (7). The
solution, however, is highly subject to small difference difficulties,
and since the functions involved have not been tabulated with a suffi-
cient degree of accuracy, no results have been computed which may be
used as a check comparison on the numerical integrations performed.
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Figure 1.- Simplified airplane subjected to sinuscidal gust velocity,
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Figure 2.- Output bending-moment spectra for one-dimensional gust tur-
bulence, cbtained from the one- and two-dimensional turbulence
expressions.
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Figure 8.- Comparison of mean-square bending-moment ratio for one- and
two-dimensional turbulence.
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